Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Trop Med Infect Dis ; 8(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37505632

RESUMO

Neutrophils are multifaceted cells that, upon activation, release meshes of chromatin associated with different proteins, known as neutrophil extracellular traps (NETs). Leishmania amazonensis promastigotes and amastigotes induce NET release, and we have identified the signaling pathways involved in NET extrusion activated by promastigotes. Amastigotes maintain the infection in vertebrate hosts, and we have shown the association of NETs with amastigotes in human biopsies of cutaneous leishmaniasis. However, the interaction of amastigotes and neutrophils remains poorly understood. Our study aimed to characterize the pathways involved in the formation of NETs induced by axenic amastigotes from L. infantum, the causal agent of visceral leishmaniasis. Human neutrophils pretreated with signaling pathway inhibitors were incubated with amastigotes, and NET release was quantified in the culture supernatant. Amastigote viability was checked after incubation with NETs. We found that the release of NETs by neutrophils stimulated with these amastigotes requires the participation of elastase and peptidyl arginine deaminase and the involvement of PI3K, ROS, and calcium. Moreover, amastigotes are not susceptible to NET-mediated killing. Altogether, these findings improve our comprehension of the signaling pathways implicated in the interaction between amastigotes and human neutrophils.

2.
Front Immunol ; 14: 886601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960058

RESUMO

Introduction: Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods: Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion: Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-ß, and TGF-ß. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-ß-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-ß-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Aspirina/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Pulmão/patologia , Bleomicina/farmacologia , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769064

RESUMO

Novel strategies for the prevention and treatment of sepsis-associated acute kidney injury and its long-term outcomes have been required and remain a challenge in critical care medicine. Therapeutic strategies using lipid mediators, such as aspirin-triggered resolvin D1 (ATRvD1), can contribute to the resolution of acute and chronic inflammation. In this study, we examined the potential effect of ATRvD1 on long-term kidney dysfunction after severe sepsis. Fifteen days after cecal ligation and puncture (CLP), sepsis-surviving BALB/c mice were subjected to a tubulointerstitial injury through intraperitoneal injections of bovine serum albumin (BSA) for 7 days, called the subclinical acute kidney injury (subAKI) animal model. ATRvD1 treatment was performed right before BSA injections. On day 22 after CLP, the urinary protein/creatinine ratio (UPC), histologic parameters, fibrosis, cellular infiltration, apoptosis, inflammatory markers levels, and mRNA expression were determined. ATRvD1 treatment mitigated tubulointerstitial injury by reducing proteinuria excretion, the UPC ratio, the glomerular cell number, and extracellular matrix deposition. Pro-fibrotic markers, such as transforming growth factor ß (TGFß), type 3 collagen, and metalloproteinase (MMP)-3 and -9 were reduced after ATRvD1 administration. Post-septic mice treated with ATRvD1 were protected from the recruitment of IBA1+ cells. The interleukin-1ß (IL-1ß) levels were increased in the subAKI animal model, being attenuated by ATRvD1. Tumor necrosis factor-α (TNF-α), IL-10, and IL-4 mRNA expression were increased in the kidney of BSA-challenged post-septic mice, and it was also reduced after ATRvD1. These results suggest that ATRvD1 protects the kidney against a second insult such as BSA-induced tubulointerstitial injury and fibrosis by suppressing inflammatory and pro-fibrotic mediators in renal dysfunction after sepsis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Aspirina/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Glomérulos Renais/efeitos dos fármacos , Sepse/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Albuminas/farmacologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Testes de Função Renal/métodos , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteinúria/induzido quimicamente , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , RNA Mensageiro/metabolismo , Sepse/metabolismo
5.
PLoS Negl Trop Dis ; 15(9): e0009760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492013

RESUMO

In insects the reserve proteins are stored in the oocytes into endocytic-originated vesicles named yolk organelles. VPS38/UVRAG and ATG14 are the variant regulatory subunits of two class-III ATG6/Beclin1 PI3K complexes that regulate the recruitment of the endocytic (complex II) and autophagic (complex I) machineries. In a previous work from our group, we found that the silencing of ATG6/Beclin1 resulted in the formation of yolk-deficient oocytes due to defects in the endocytosis of the yolk proteins. Because ATG6/Beclin1 is present in the two above-described PI3K complexes, we could not identify the contributions of each complex to the yolk defective phenotypes. To address this, here we investigated the role of the variant subunits VPS38/UVRAG (complex II, endocytosis) and ATG14 (complex I, autophagy) in the biogenesis of the yolk organelles in the insect vector of Chagas Disease Rhodnius prolixus. Interestingly, the silencing of both genes phenocopied the silencing of ATG6/Beclin1, generating 1) accumulation of yolk proteins in the hemolymph; 2) white, smaller, and yolk-deficient oocytes; 3) abnormal yolk organelles in the oocyte cortex; and 4) unviable F1 embryos. However, we found that the similar phenotypes were the result of a specific cross-silencing effect among the PI3K subunits where the silencing of VPS38/UVRAG and ATG6/Beclin1 resulted in the specific silencing of each other, whereas the silencing of ATG14 triggered the silencing of all three PI3K components. Because the silencing of VPS38/UVRAG and ATG6/Beclin1 reproduced the yolk-deficiency phenotypes without the cross silencing of ATG14, we concluded that the VPS38/UVRAG PI3K complex II was the major contributor to the previously observed phenotypes in silenced insects. Altogether, we found that class-III ATG6/Beclin1 PI3K complex II (VPS38/UVRAG) is essential for the yolk endocytosis and that the subunits of both complexes are under an unknown transcriptional regulatory system.


Assuntos
Proteína Beclina-1/metabolismo , Proteínas de Insetos/metabolismo , Oócitos/fisiologia , Organelas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Rhodnius/fisiologia , Animais , Proteína Beclina-1/genética , Doença de Chagas/transmissão , Gema de Ovo/fisiologia , Regulação da Expressão Gênica , Inativação Gênica , Proteínas de Insetos/genética , Insetos Vetores/fisiologia , Oócitos/citologia , Fosfatidilinositol 3-Quinases/genética
6.
Front Physiol ; 11: 573347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071827

RESUMO

Growing evidence demonstrates a continuous interaction between the immune system and the skeletal muscle in inflammatory diseases of different pathogenetic origins, in dystrophic conditions such as Duchenne Muscular Dystrophy as well as during normal muscle regeneration. Although one component of the innate immunity, the macrophage, has been extensively studied both in disease conditions and during cell or gene therapy strategies aiming at restoring muscular functions, much less is known about dendritic cells and their primary immunological targets, the T lymphocytes. This review will focus on the dendritic cells and T lymphocytes (including effector and regulatory T-cells), emphasizing the potential cross talk between these cell types and their influence on the structure and function of skeletal muscle.

7.
J Invest Dermatol ; 139(5): 1161-1170, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30465800

RESUMO

Wound healing is a well-coordinated process that involves inflammatory mediators and cellular responses; however, if any disturbances are present during this process, tissue repair is impaired. Chronic wounds are one of the serious long-term complications associated with diabetes mellitus. The chemokine receptor CCR4 and its respective ligands, CCL17 and CCL22, are involved in regulatory T cell recruitment and activation in inflamed skin; however, the role of regulatory T cells in wounds is still not clear. Our aim was to investigate the role of CCR4 and regulatory T cells in cutaneous wound healing in diabetic mice. Alloxan-induced diabetic wild- type mice (diabetic) developed wounds that were difficult to heal, differently from CCR4-/- diabetic mice (CCR4-/- diabetic), and also from anti-CCL17/22 or anti-CD25-injected diabetic mice that presented with accelerated wound healing and fewer regulatory T cells in the wound bed. Consequently, CCR4-/- diabetic mice also presented with alteration on T cells population in the wound and draining lymph nodes; on day 14, these mice also displayed an increase of collagen fiber deposition. Still, cytokine levels were decreased in the wounds of CCR4-/- diabetic mice on day 2. Our data suggest that the receptor CCR4 and regulatory T cells negatively affect wound healing in diabetic mice.


Assuntos
Quimiocina CCL17/antagonistas & inibidores , Quimiocina CCL22/antagonistas & inibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Receptores CCR4/metabolismo , Cicatrização/efeitos dos fármacos , Aloxano/farmacologia , Análise de Variância , Animais , Biópsia por Agulha , Quimiocina CCL17/farmacologia , Quimiocina CCL22/farmacologia , Quimiocinas/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real/métodos , Cicatrização/fisiologia
8.
Front Immunol ; 9: 1979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258438

RESUMO

In chronic schistosomiasis, liver fibrosis is linked to portal hypertension, which is a condition associated with high mortality and morbidity. High mobility group box 1 (HMGB1) was originally described as a nuclear protein that functions as a structural co-factor in transcriptional regulation. However, HMGB1 can also be secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 acts as a multifunctional cytokine that contributes to infection, injury, inflammation, and immune responses by binding to specific cell-surface receptors. HMGB1 is involved in fibrotic diseases. From a clinical perspective, HMGB1 inhibition may represent a promising therapeutic approach for treating tissue fibrosis. In this study, we demonstrate elevated levels of HMGB1 in the sera in experimental mice or in patients with schistosomiasis. Using immunohistochemistry, we demonstrated that HMGB1 trafficking in the hepatocytes of mice suffering from acute schistosomiasis was inhibited by Glycyrrhizin, a well-known HMGB1 direct inhibitor, as well as by DIC, a novel and potential anti-HMGB1 compound. HMGB1 inhibition led to significant downregulation of IL-6, IL4, IL-5, IL-13, IL-17A, which are involved in the exacerbation of the immune response and liver fibrogenesis. Importantly, infected mice that were treated with DIC or GZR to inhibit HMGB1 pro-inflammatory activity showed a significant increase in survival and a reduction of over 50% in the area of liver fibrosis. Taken together, our findings indicate that HMGB1 is a key mediator of schistosomotic granuloma formation and liver fibrosis and may represent an outstanding target for the treatment of schistosomiasis.


Assuntos
Granuloma , Proteína HMGB1/imunologia , Cirrose Hepática , Fígado , Schistosoma mansoni/imunologia , Esquistossomose mansoni , Animais , Citocinas/imunologia , Feminino , Granuloma/imunologia , Granuloma/parasitologia , Granuloma/patologia , Humanos , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos BALB C , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/patologia
9.
Cell Death Dis ; 9(5): 551, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29748534

RESUMO

Idiopathic Inflammatory Myopathies (IIMs) are a heterogeneous group of autoimmune diseases affecting skeletal muscle tissue homeostasis. They are characterized by muscle weakness and inflammatory infiltration with tissue damage. Amongst the cells in the muscle inflammatory infiltration, dendritic cells (DCs) are potent antigen-presenting and key components in autoimmunity exhibiting an increased activation in inflamed tissues. Since, the IIMs are characterized by the focal necrosis/regeneration and muscle atrophy, we hypothesized that DCs may play a role in these processes. Due to the absence of a reliable in vivo model for IIMs, we first performed co-culture experiments with immature DCs (iDC) or LPS-activated DCs (actDC) and proliferating myoblasts or differentiating myotubes. We demonstrated that both iDC or actDCs tightly interact with myoblasts and myotubes, increased myoblast proliferation and migration, but inhibited myotube differentiation. We also observed that actDCs increased HLA-ABC, HLA-DR, VLA-5, and VLA-6 expression and induced cytokine secretion on myoblasts. In an in vivo regeneration model, the co-injection of human myoblasts and DCs enhanced human myoblast migration, whereas the absolute number of human myofibres was unchanged. In conclusion, we suggest that in the early stages of myositis, DCs may play a crucial role in inducing muscle-damage through cell-cell contact and inflammatory cytokine secretion, leading to muscle regeneration impairment.


Assuntos
Diferenciação Celular , Proliferação de Células , Células Dendríticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Adulto , Antígenos de Diferenciação/biossíntese , Células Dendríticas/citologia , Feminino , Humanos , Recém-Nascido , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Mioblastos Esqueléticos/citologia
10.
Brain ; 141(6): 1609-1621, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741608

RESUMO

Dermatomyositis is an acquired auto-immune disease characterized by skin lesions and muscle-specific pathological features such as perifascicular muscle fibre atrophy and vasculopathy. Dermatomyositis patients display an upregulation of type I interferon-inducible genes in muscle fibres, endothelial cells, skin and peripheral blood. However, the effect of type I interferon on muscle tissue has not yet been determined. Our aim was to study the pathogenicity of type I interferon in vitro and to evaluate the efficacy of the type I interferon pathway blockade for therapeutic purposes. The activation of type I interferon in differentiating myoblasts abolished myotube formation with reduced myogenin expression while in differentiated myotubes, we observed a reduction in surface area and an upregulation of atrophy-associated genes. In vitro endothelial cells exposure to type I interferon disrupted vascular network organization. All the pathogenic effects observed in vitro were abolished by ruxolitinib. Finally, four refractory dermatomyositis patients were treated with ruxolitinib and improvement ensued in skin lesions, muscle weakness and a reduced serum type I interferon levels and interferon-inducbile genes scores. We propose JAK inhibition as a mechanism-based treatment for dermatomyositis, a finding that is relevant for the design of future clinical trials targeting dermatomyositis.


Assuntos
Dermatomiosite , Interferon Tipo I/toxicidade , Inibidores de Janus Quinases/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Transformada , Dermatomiosite/induzido quimicamente , Dermatomiosite/tratamento farmacológico , Dermatomiosite/patologia , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Neovascularização Patológica/induzido quimicamente , Nitrilas , Pirimidinas , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Mol Neurobiol ; 55(1): 435-444, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27966074

RESUMO

Sepsis survivors frequently develop late cognitive impairment. Because little is known on the mechanisms of post-septic memory deficits, there are no current effective approaches to prevent or treat such symptoms. Here, we subjected mice to severe sepsis induced by cecal ligation and puncture (CLP) and evaluated the sepsis-surviving animals in the open field, novel object recognition (NOR), and step-down inhibitory avoidance (IA) task at different times after surgery. Post-septic mice (30 days post-surgery) failed in the NOR and IA tests but exhibited normal performance when re-evaluated 45 days after surgery. Cognitive impairment in post-septic mice was accompanied by reduced hippocampal levels of proteins involved in synaptic plasticity, including synaptophysin, cAMP response element-binding protein (CREB), CREB phosphorylated at serine residue 133 (CREBpSer133), and GluA1 phosphorylated at serine residue 845 (GluA1pSer845). Expression of tumor necrosis factor α (TNF-α) was increased and brain insulin signaling was disrupted, as indicated by increased hippocampal IRS-1 phosphorylation at serine 636 (IRS-1pSer636) and decreased phosphorylation of IRS-1 at tyrosine 465 (IRS-1pTyr465), in the hippocampus 30 days after CLP. Phosphorylation of Akt at serine 473 (AktpSer473) and of GSK3 at serine 9 (GSK3ßpSer9) were also decreased in hippocampi of post-septic animals, further indicating that brain insulin signaling is disrupted by sepsis. We then treated post-septic mice with liraglutide, a GLP-1 receptor agonist with insulinotropic activity, or TDZD-8, a GSK3ß inhibitor, which rescued NOR memory. In conclusion, these results establish that hippocampal inflammation and disrupted insulin signaling are induced by sepsis and are linked to late memory impairment in sepsis survivors.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Insulina/metabolismo , Sepse/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Sepse/complicações , Sepse/patologia
12.
Mediators Inflamm ; 2017: 2086840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894350

RESUMO

TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO-/- mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Flavonoides/farmacologia , Immunoblotting , Leucotrienos/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fagocitose/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Ratos , Ratos Wistar , Ovinos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
Clin Transl Immunology ; 5(7): e90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27525063

RESUMO

Mammals harbor a complex gut-associated microbiota, comprising bacteria that provide immunological, metabolic and neurological benefits to the host, and contribute to their well-being. However, dysregulation of the microbiota composition, known as dysbiosis, along with the associated mucosal immune response have a key role in the pathogenesis of many inflammatory diseases, including inflammatory bowel diseases (IBDs), type 1 and type 2 diabetes, asthma, multiple sclerosis, among others. In addition, outside the gut lumen, bacteria from microbiota are the causative agent of peritoneal inflammation, abdominal sepsis and systemic sepsis. Critical care interventions during sepsis by antibiotics induce dysbiosis and present acute and long-term poor prognosis. In this review, we discuss immunomodulatory effects of the microbial molecules and products, highlighting the role of Bacteroides fragilis, a human commensal with ambiguous interactions with the host. Moreover, we also address the impact of antibiotic treatment in sepsis outcome and discuss new insights for microbiota modulation.

14.
PLoS One ; 11(3): e0151252, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978520

RESUMO

The precise context in which the innate immune system is activated plays a pivotal role in the subsequent instruction of CD4+ T helper (Th) cell responses. Th1 responses are downregulated when antigen is encountered in the presence of antigen-IgG immune complexes. To assess if Th17 responses to antigen are subject to similar influences in the presence of immune complexes we utilized an inflammatory airway disease model in which immunization of mice with Complete Freund's Adjuvant (CFA) and ovalbumin (Ova) induces a powerful Ova-specific Th1 and Th17 response. Here we show that modification of that immunization with CFA to include IgG-Ova immune complexes results in the suppression of CFA-induced Th17 responses and a concurrent enhancement of Ova-specific Th2 responses. Furthermore, we show the mechanism by which these immune complexes suppress Th17 responses is through the enhancement of IL-10 production. In addition, the generation of Th17 responses following immunization with CFA and Ova were dependent on IL-1α but independent of NLRP3 inflammasome activation. Together these data represent a novel mechanism by which the generation of Th17 responses is regulated.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Inflamassomos/imunologia , Células Th17/imunologia , Animais , Complexo Antígeno-Anticorpo/metabolismo , Adjuvante de Freund , Imunização , Inflamassomos/metabolismo , Interleucina-1alfa/metabolismo , Camundongos , Ovalbumina , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
15.
PLoS One ; 10(10): e0139805, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448282

RESUMO

Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.


Assuntos
Eosinófilos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Schistosoma mansoni/patogenicidade , Difosfato de Adenosina/farmacologia , Animais , Células da Medula Óssea/citologia , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Humanos , Inflamação , Interleucina-13/análise , Interleucina-13/sangue , Interleucina-4/análise , Interleucina-4/sangue , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/patologia , Células Th2/imunologia
16.
PLoS One ; 10(7): e0133227, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197455

RESUMO

Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.


Assuntos
Receptores CCR4/imunologia , Sepse/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Deleção de Genes , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/imunologia , Receptores CCR4/genética , Sepse/genética , Sepse/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/imunologia
17.
J Invest Dermatol ; 134(5): 1436-1445, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24226420

RESUMO

Lipid mediators derived from 5-lipoxygenase (5-LO) metabolism can activate both pro- and anti-inflammatory pathways, but their role in wound healing remains largely unexplored. In this study we show that 5-LO knockout (5-LO(-/-)) mice exhibited faster wound healing than wild-type (WT) animals, and exhibited upregulation of heme oxygenase-1 (HO-1). Furthermore, HO-1 inhibition in 5-LO(-/-) mice abolished the beneficial effect observed. Despite the fact that 5-LO(-/-) mice exhibited faster healing, in in vitro assays both migration and proliferation of human dermal fibroblasts (HDFs) were inhibited by the 5-LO pharmacologic inhibitor AA861. No changes were observed in the expression of fibronectin, transforming growth factor (I and III), and α-smooth muscle actin (α-SMA). Interestingly, AA861 treatment significantly decreased ROS formation by stimulated fibroblasts. Similar to 5-LO(-/-) mice, induction of HO-1, but not superoxide dismutase-2 (SOD-2), was also observed in response to 5-LO (AA861) or 5-LO activating protein (MK886) inhibitors. HO-1 induction was independent of nuclear factor (erythroid derived-2) like2 (Nrf-2), cyclooxygenase 2 (COX-2) products, or lipoxin action. Taken together, our results show that 5-LO disruption improves wound healing and alters fibroblast function by an antioxidant mechanism based on HO-1 induction. Overexpression of HO-1 in wounds may facilitate early wound resolution.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Dermatite/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Cicatrização/fisiologia , Adulto , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Dermatite/genética , Dermatite/imunologia , Derme/citologia , Derme/imunologia , Derme/metabolismo , Modelos Animais de Doenças , Fibroblastos/imunologia , Fibroblastos/metabolismo , Heme Oxigenase-1/imunologia , Humanos , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Estresse Oxidativo/fisiologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo
18.
Int Wound J ; 11(2): 190-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22905783

RESUMO

Silver is used worldwide in dressings for wound management. Silver has demonstrated great efficacy against a broad range of microorganisms, but there is very little data about the systemic absorption and toxicity of silver in vivo. In this study, the antimicrobial effect of the silver-coated dressing (SilverCoat(®)) was evaluated in vitro against the most common microorganisms found in wounds, including Pseudomonas aeruginosa, Candida albicans, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae. We also performed an excisional skin lesion assay in mice to evaluate wound healing after 14 days of treatment with a silver-coated dressing, and we measured the amount of silver in the blood, the kidneys and the liver after treatment. Our data demonstrated that the nylon threads coated with metallic silver have a satisfactory antimicrobial effect in vitro, and the prolonged use of these threads did not lead to systemic silver absorption, did not induce toxicity in the kidneys and the liver and were not detrimental to the normal wound-healing process.


Assuntos
Bandagens , Poliésteres/farmacologia , Polietilenos/farmacologia , Prata/administração & dosagem , Cicatrização , Animais , Argiria/epidemiologia , Sobrevivência Celular , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/análise , Camundongos , Poliésteres/administração & dosagem , Polietilenos/administração & dosagem , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Infecção dos Ferimentos/prevenção & controle , Ferimentos e Lesões/microbiologia
19.
Am J Respir Cell Mol Biol ; 50(1): 87-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23947598

RESUMO

Postsepsis lung injury is a common clinical problem associated with significant morbidity and mortality. Leukotrienes (LTs) are important lipid mediators of infection and inflammation derived from the 5-lipoxygenase (5-LO) metabolism of arachidonate with the potential to contribute to lung damage after sepsis. To test the hypothesis that LTs are mediators of lung injury after sepsis, we assessed lung structure, inflammatory mediators, and mechanical changes after cecal ligation and puncture surgery in wild-type (WT) and 5-LO knockout (5-LO(-/-)) mice and in WT mice treated with a pharmacologic LT synthesis inhibitor (MK886) and LT receptor antagonists (CP105,696 and montelukast). Sixteen hours after surgery, WT animals exhibited severe lung injury (by histological analysis), substantial mechanical impairment (i.e., an increase in static lung elastance), an increase in neutrophil infiltration, and high levels of LTB4, cysteinyl-LTs (cys-LTs), prostaglandin E2, IL-1ß, IL-6, IL-10, IL-17, KC (CXCL1), and monocyte chemotactic protein-1 (CCL2) in lung tissue and plasma. 5-LO(-/-) mice and WT mice treated with a pharmacologic 5-LO inhibitor were significantly protected from lung inflammation and injury. Selective antagonists for BLT1 or cys-LT1, the high-affinity receptors for LTB4 and cys-LTs, respectively, were insufficient to provide protection when used alone. These results point to an important role for 5-LO products in sepsis-induced lung injury and suggest that the use of 5-LO inhibitors may be of therapeutic benefit clinically.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Lesão Pulmonar/metabolismo , Sepse/metabolismo , Transdução de Sinais/fisiologia , Animais , Ceco/efeitos dos fármacos , Ceco/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antagonistas de Leucotrienos/farmacologia , Leucotrieno B4/metabolismo , Lesão Pulmonar/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Receptores de Leucotrienos/metabolismo , Receptores do Leucotrieno B4/metabolismo , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
20.
Am J Respir Cell Mol Biol ; 49(6): 1029-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23848293

RESUMO

No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374-5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-ß expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G(+), F4/80(+), CD11c(+), CD4(+), and B220(+) cells) assays. Moreover, ATLa inhibited the lung production of IL-1ß, IL-17, TNF-α, and TGF-ß induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase-positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis.


Assuntos
Lipoxinas/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Animais , Arginase/metabolismo , Aspirina/uso terapêutico , Biomarcadores/metabolismo , Bleomicina/toxicidade , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Citocinas/biossíntese , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Proteína C Associada a Surfactante Pulmonar , Mecânica Respiratória/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA